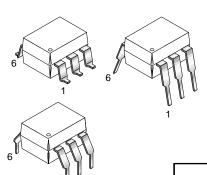
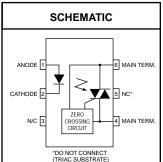


MOC3031M MOC3032M MOC3033M MOC3041M MOC3042M MOC3043M

DESCRIPTION

The MOC303XM and MOC304XM devices consist of a AlGaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver.


They are designed for use with a triac in the interface of logic systems to equipment powered from 115 VAC lines, such as teletypewriters, CRTs, solid-state relays, industrial controls, printers, motors, solenoids and consumer appliances, etc.


FEATURES

- Simplifies logic control of 115 VAC power
- · Zero voltage crossing
- dv/dt of 2000 V/μs typical, 1000 V/μs guaranteed
- VDE recognized (File # 94766)
- -ordering option V (e.g., MOC3043VM)

APPLICATIONS

- Solenoid/valve controls
- Static power switches
- Temperature controls
- AC motor starters
- · Lighting controls
- AC motor drives
- E.M. contactors
- Solid state relays

Parameters	Symbol	Device	Value	Units	
TOTAL DEVICE	т	All	40.45 .450	°C	
Storage Temperature	T_{STG}	All	-40 to +150		
Operating Temperature	T _{OPR}	All	-40 to +85	°C	
Lead Solder Temperature	T _{SOL}	All	260 for 10 sec	°C	
Junction Temperature Range	T _J	All	-40 to +100	°C	
Isolation Surge Voltage ⁽¹⁾ (peak AC voltage, 60Hz, 1 sec duration)	V _{ISO}	All	7500	Vac(pk)	
Total Device Power Dissipation @ 25°C	D	All	250	mW	
Derate above 25°C	P_{D}	All	2.94	mW/°C	
EMITTER		All	60	mA	
Continuous Forward Current	l _F	All	60	MA	
Reverse Voltage	V _R	All	6	V	
Total Power Dissipation 25°C Ambient	В	All	120	mW	
Derate above 25°C	P_{D}	All	1.41	mW/°C	
DETECTOR	.,	MOC3031M/2M/3M	250		
Off-State Output Terminal Voltage	V_{DRM}	MOC3041M/2M/3M	400	V	
Peak Repetitive Surge Current (PW = 100 μs, 120 pps)	I _{TSM}	All	1	Α	
Total Power Dissipation @ 25°C Ambient	В	All	150	mW	
Derate above 25°C	P_{D}	All	1.76	mW/°C	

Note

1. Isolation surge voltage, V_{ISO}, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common.

MOC3031M	MOC3032M	MOC3033M	MOC3041M	MOC3042M	MOC3043M

ELECTRICAL CHARACTERISTICS (T_A = 25°C Unless otherwise specified)

INDIVIDUAL COMPONENT CHARACTERISTICS							
Parameters	Test Conditions Symbol		Device	Min	Тур	Max	Units
EMITTER	1 20 mA	\/	All		1.25	1.5	V
Input Forward Voltage	$I_F = 30 \text{ mA}$	V _F	All		1.25	1.5	l v
Reverse Leakage Current	V _R = 6 V	I _R	All		0.01	100	μΑ
DETECTOR							
Peak Blocking Current, Either Direction	Rated V_{DRM} , $I_F = 0$ (note 1)	I _{DRM1}	All			100	nA
Peak On-State Voltage, Either Direction	$I_{TM} = 100 \text{ mA peak}, I_F = 0$	V_{TM}	All		1.8	3	V
Critical Rate of Rise of Off-State Voltage	al Rate of Rise of Off-State Voltage $I_F = 0$ (figure 9, note 3) dv/dt All 1000				V/µs		

TRANSFER CHARACTERISTICS (T _A = 25°C Unless otherwise specified.)							
DC Characteristics Test Conditions Symbol Device Min Typ				Тур	Max	Units	
	Main terminal voltage = 3V (note 2)	I _{FT}	MOC3031M/MOC3041M			15	
LED Trigger Current			MOC3032M/MOC3042M			10	mA
			MOC3033M/MOC3043M			5	
Holding Current, Either Direction		I _H	All		400		μΑ

ZERO CROSSING CHARACTERISTICS (T _A = 25°C Unless otherwise specified.)							
Characteristics	Test Conditions	Symbol	Device	Min	Тур	Max	Units
Inhihit Voltage	I _F = rated I _{FT} , MT1-MT2 voltage above	V	All			20	V
Inhibit Voltage	which device will not trigger off-state	V _{IH} All			'	20	\ \ \
Leakage in Inhibited State	I _F = rated I _F , rated V _{DRM} , off-state	I _{DRM2}	All			500	μΑ

Note

- 1. Test voltage must be applied within dv/dt rating.
- 2. All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT} . Therefore, recommended operating I_F lies between max I_{FT} (15 mA for MOC3031M & MOC3041M, 10 mA for MOC3032M & MOC3042M, 5 mA for MOC3033M & MOC3043M) and absolute max I_F (60 mA).
- 3. This is static dv/dt. See Figure 9 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only.

MOC3031M MOC3032M MOC3033M MOC3041M MOC3042M MOC3043M

Figure 1. LED Forward Voltage vs. Forward Current

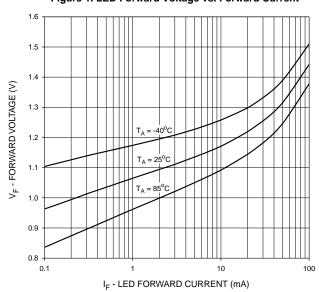


Figure 3. Trigger Current vs. Temperature

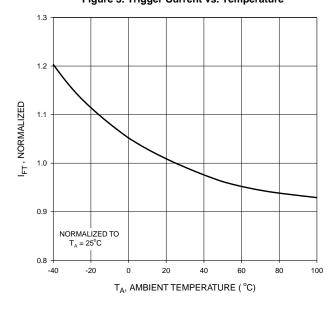
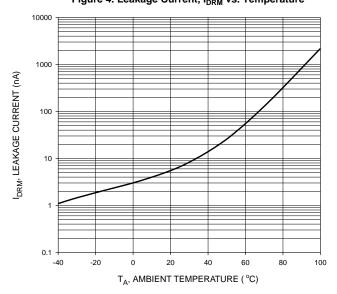



Figure 4. Leakage Current, I_{DRM} vs. Temperature

 V_{TM} , ON-STATE VOLTAGE (VOLTS)

MOC3031M MOC3032M MOC3033M MOC3041M MOC3042M MOC3043M

Figure 5. I_{DRM2} - Leakage in Inhibit State vs. Temperature

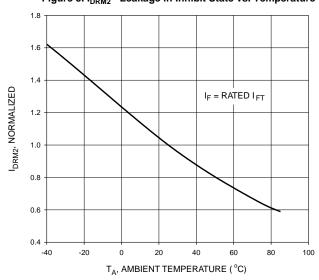


Figure 6. LED Current Required to Trigger vs. LED Pulse Width

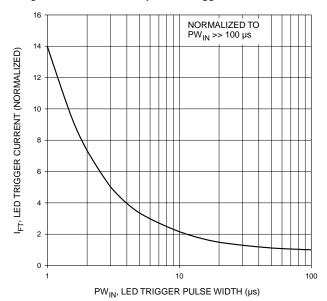


Figure 7. Holding Current, I_H vs. Temperature

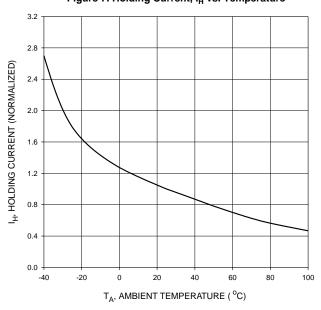
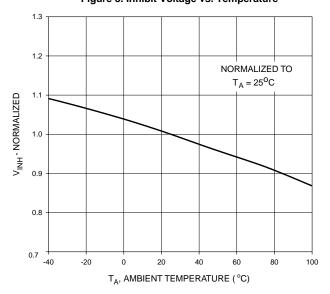
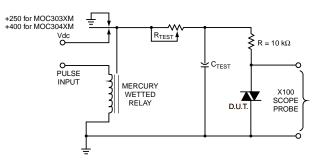
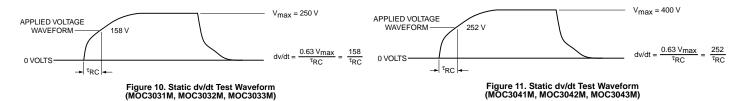
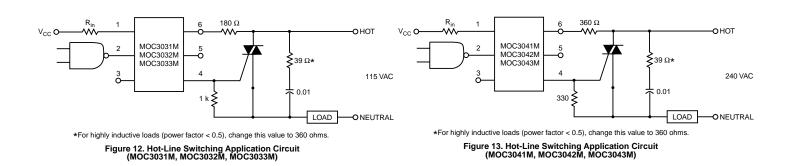



Figure 8. Inhibit Voltage vs. Temperature

MOC3031M MOC3032M MOC3033M MOC3041M MOC3042M MOC3043M


Figure 9. Static dv/dt Test Circuit

- The mercury wetted relay provides a high speed repeated pulse to the D.U.T.
- 100x scope probes are used, to allow high speeds and voltages.
- 3. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable R_{TEST} allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. ^TRC is measured at this point and recorded.

Typical circuit (Fig 12, 13) for use when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line.

 R_{in} is calculated so that I_F is equal to the rated I_{FT} of the part, 5 mA for the MOC3033M and MOC3043M, 10 mA for the MOC3032M and MOC3042M, or 15 mA for the MOC3031M and MOC3041M. The 39 ohm resistor and 0.01 μ F capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load used.

MOC3031M MOC3032M MOC3033M MOC3041M MOC3042M MOC3043M

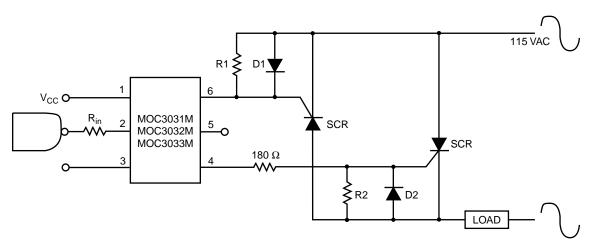


Figure 14. Inverse-Parallel SCR Driver Circuit (MOC3031M, MOC3032M, MOC3033M)

Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 1 k ohm.

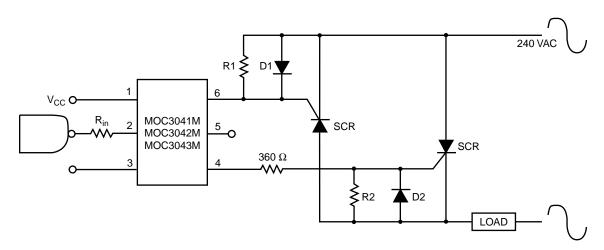
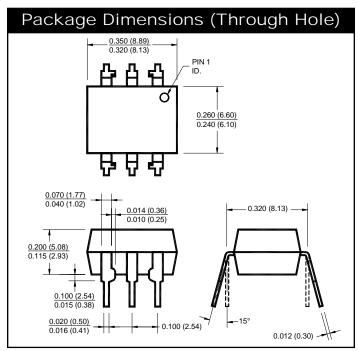
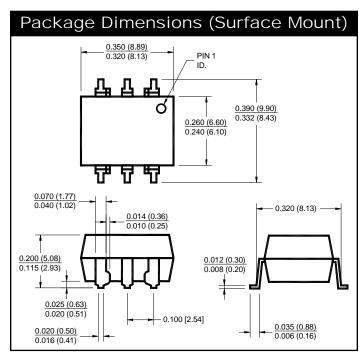
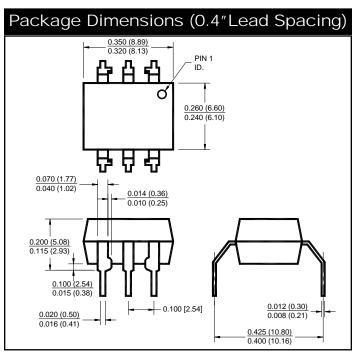
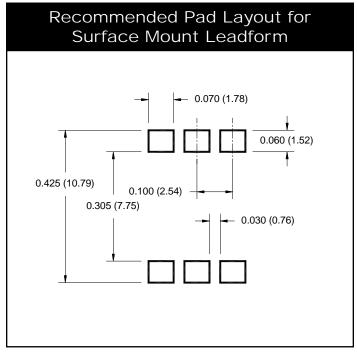


Figure 15. Inverse-Parallel SCR Driver Circuit (MOC3041M, MOC3042M, MOC3043M)


Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330 ohm.


Note: This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only.

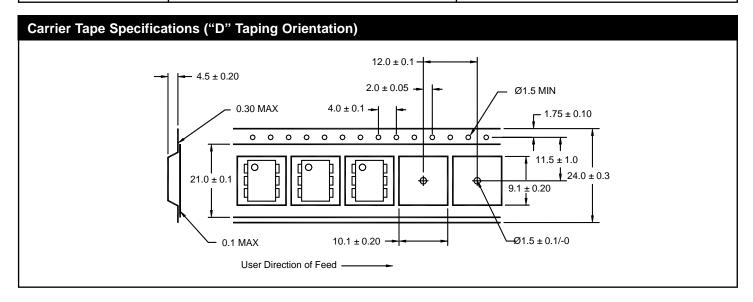




MOC3031M MOC3032M MOC3033M MOC3041M MOC3042M MOC3043M

NOTE

All dimensions are in inches (millimeters)


ELECTROSÓN

MOC3031M	MOC3032M	MOC3033M	MOC3041M	MOC3042M	MOC3043M

ORDERING INFORMATION

Option	Order Entry Identifier	Description
S	S	Surface Mount Lead Bend
SR2	SR2	Surface Mount; Tape and reel
Т	Т	0.4" Lead Spacing
V	V	VDE 0884
TV	TV	VDE 0884, 0.4" Lead Spacing
SV	SV	VDE 0884, Surface Mount
SR2V	SR2V	VDE 0884, Surface Mount, Tape & Reel

NOTE

All dimensions are in inches (millimeters)

MOC3031M MOC3032M MOC3033M MOC3041M MOC3042M MOC3043M

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body,or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

